The Crystal Structures of BaZnO₂, BaCoO₂ and BaMnO₂

BY U. SPITSBERGEN

Laboratorium voor Anorganische en Physische Chemie, Rijksuniversiteit Leiden, The Netherlands

(Received 15 July 1959 and in revised form 28 September 1959)

Earth-alkali oxides and bivalent transition-metal oxides will form compounds ABO_2 when the earth-alkali ion is large and the transition-metal ion is small.

In the investigation of the systems Ba-M-O, in which M represents Mn, Co, Ni, Zn and Be, a similarity between the powder diagrams of the compounds $BaCoO_2$, $BaMnO_2$ and the compound $BaZnO_2$ was found.

A crystallographic analysis has been made on a powder diagram of BaZnO₂, which results in a model in which the Zn and O ions are arranged in a distorted high (β -) quartz structure, while the Ba ions fill up the widened holes between the O tetrahedra.

This behaviour of the earth alkali metal in $BaZnO_2$ can be compared with that of the alkali metal in KFeO₂.

Experimental

Mixtures of BaCO₃ and $M^{II}O$ or $M^{II}CO_3$ weighed in the ratio 1:1 were fired in high vacuum or in a flow of a suitable gas in a resistance furnace at temperatures up to 1100 °C. Completion of the reaction could be checked by loss of weight. MgO was chosen as refractory material to avoid chemical attack by BaO. Crucibles ground from a non-porous single crystal of MgO were used.

The reaction products were obtained under the following conditions:

were absent or very weak. The absence of 00*l* with $l \neq 3$ suggested a threefold screw axis. This, together with the correspondence of volume of the unit cell, ratio a/c and number of molecules per unit cell between BaZnO₂ and the low (α -)quartz structure made a trial of the space group D_3^4 - $P3_121$ (low quartz) worth while.

The threefold positions are:

a
$$x, 0, \frac{1}{3}; 0, x, \frac{2}{3}; \overline{x}, \overline{x}, 0.$$

b $x, 0, \frac{5}{8}; 0, x, \frac{1}{8}; \overline{x}, \overline{x}, \frac{1}{9}.$

Mixture 1:1	$\mathbf{Atmosphere}$	Temp. (°C.)	Product	Appearance
BaCo ₂ , MnCO ₂	H,	980	$BaMnO_2$	black
BaCO, CoCO, or CoO	high vacuum	1010	BaCoO ₂	black
BaCO, NiO	high vacuum	1000	BaNiO_2	black
BaCO3 or Ba(NO3)2, ZnO*	N,	1000	BaZnO,	yellow-white
BaCO ₃ , BeCO ₃	$\mathbf{H_2}$	1100	$BaBeO_2$	pink-white

* The powder diagram of the reaction product of $Ba(NO_3)_2$ and ZnO giving the clearest, sharpest lines was used in the crystallographic analysis of $BaZnO_2$.

The existence of these compounds was reported by Scholder (1954).

A similarity was found in the powder diagrams of $BaZnO_2$, $BaCoO_2$ and $BaMnO_2$. $BaNiO_2$ gave a different pattern, which showed a good agreement with the results of Lander (1951). A third pattern was found in the case of $BaBeO_2$.

BaZnO₂

By Hull's graphical method a satisfying hexagonal indexing could be given to a powder diagram from a Guinier focusing camera. The cell dimensions were $a=5.927\pm0.005$ and $c=6.707\pm0.006$ Å. The measured density 5.50 g.cm.⁻³ corresponds with three molecules of BaZnO₂ per unit cell.

The lines 110 and 102 were very strong, while 001, 002, 111, 103, 203, 004, 301, 213, 221, 005 and 400

The sixfold positions are:

c
$$x, y, z; \bar{y}, x-y, \frac{1}{3}+z; y-x, \bar{x}, \frac{2}{3}+z; y, x, \bar{z}; \bar{x}, y-x, \frac{1}{3}-z; x-y, \bar{y}, \frac{2}{3}-z.$$

A first trial was made with the Zn ions situated in the *a*-positions and the Ba ions in the *b*-positions, scattering effect of the O ions being omitted. The absence or weakness of the lines mentioned above could be accounted for by giving the Ba ions the parameter $x=\frac{2}{3}$. A good agreement between observed and calculated intensities could be achieved by giving the metal ions the parameters $x_{\rm Zn}=0.50$ and $x_{\rm Ba}=0.65$.

The parameters x, y, z, of the O ions, which occupy the *c*-positions of the space group $P3_121$ cannot easily be analyzed from a powder diagram. However, an investigation can be made into whether a plausible O-arrangement exists which is compatible with the Zn and Ba parameters already found. When space

10	010 1. 21-74	ig uutu je	n Dazin	02	
$10^3 \sin^2 \theta$	$10^3 \sin^2 heta$		I	Ι	
(obs.)	(cale.)	hkl	(obs.)	(calc.)	
_	13.6	001		0	
22.9	23.0	100	3	5	
36.1	36.2	101	12	20	
	52.7	002	_	0	
69.0	68.9	110	22	25	
75.7	75.7	102	30	30	
81.9	82.1	111	1	1	
91.9	91.8	200	3	5	
104.9	105.0	201	8	11	
118.7	118.6	003	2	1	
121.5	121.6	112	2	4	
	141.6	103	<u> </u>	0	
144.6	144.5	202	11	7	
160.9	160.8	210	1	0	
174.3	174.0	211	4	14	
187.4	187.5	113	3	7	
206.5	206.7	300	3	2	
210.0	210.4	203	1	1	
_	210.9	004	<u> </u>	0	
213.9	213.5	212	6	6	
219.3	219.9	301	1	1	
233.6	233.9	104	4	5	
259.9	259.4	302	1	1	
275.3	$275 \cdot 6$	220	4	2	
279.3	∫ 279•4	213	1	∫ 1	
219.3	1 279⋅8	114 j	1	$\left\{\begin{array}{c}1\\1\\0\end{array}\right.$	
—	288.8	221			
298.6	298.6	310	2	1	
303·0	302.7	204	3	2	
311.5	311.8	311	2	7	
$324 \cdot 9$	$325 \cdot 3$	303	2	5	
	328.3	222		0	
<u> </u>	329.5	005		0	
$352 \cdot 2$	∫ 351.3	312)	2	f 2	
004.2	€ 352·5	105 ∫	4	$\left\{ \begin{array}{c} 2\\ 1 \end{array} \right\}$	
—	367.5	4 00		0	
371.9	371.7	214	1	3	
379.9	380.7	401	2	2	

and symmetry rules were taken into account, a suitable O-arrangement was found starting from the high $(\beta$ -)quartz structure. A model resulted with the O parameters

$$x=0.41, y=0.19, z=0.15$$

in which the Zn ions are situated in the centre of four O ions.

In this model the Ba ions are surrounded by ten O ions, six of them in a ring at approximately the same height. The distances between the Ba and the O ions vary from 2.64 to 4.36 Å. The Zn ions are surrounded by four O ions in a distorted tetrahedral arrangement. The distance between the Zn and O ions is 1.92 Å. The distances between the O ions vary from 3.02 to 3.19 Å.

Though these O parameters have little quantitative value, they are included in the final intensity calculation. The usual geometrical factors were applied, but absorption and temperature factors were omitted. The results are shown in Table 1.

BaCoO₂, BaMnO₂

The powder diagram of the compound BaCoO₂ could be indexed in the same way as BaZnO₂, giving a=5.85and c=6.73 Å. The stronger lines of BaZnO₂ appear with the same intensity pattern, so that a similar structure can be assumed.

The X-ray analysis of $BaMnO_2$ was disturbed by the ready decomposition (and probably oxidation) of the product. In most cases BaO reflections could be detected. However, a weak powder diagram could be obtained which showed a resemblance to the $BaZnO_2$ pattern without disturbing lines.

The lines could be given the indices of the strongest $BaZnO_2$ reflections. The possibility that $BaMnO_2$ has a similar structure is not excluded; however, methods should be found to improve the powder diagram of this unstable product.

The author wishes to express his gratitude to Prof. Dr A. E. van Arkel for his kind interest in this work.

References

LANDER, J. J. (1951). Acta Cryst. 4, 148. SCHOLDER, R. (1954). Angew. Chem. 66, 461.

1